Home // Posts tagged "methaphors"

Quien habla solo espera hablar a Dios un día

Via Nestor Caticha:

Quien habla solo espera hablar a Dios un día

(Sevilla, España, 1875-Collioure, Francia, 1939)


Mi infancia son recuerdos de un patio de Sevilla,
y un huerto claro donde madura el limonero;
mi juventud, veinte años en tierras de Castilla;
mi historia, algunos casos de recordar no quiero.

Ni un seductor Mañara, ni un Bradomín he sido
-ya conocéis mi torpe aliño indumentario-,
mas recibí la flecha que me asignó Cupido,
y amé cuanto ellas puedan tener de hospitalario.

Hay en mis venas gotas de sangre jacobina,
pero mi verso brota de manantial sereno;
y más que un hombre al uso que sabe su doctrina
soy, en el buen sentido de la palabra, bueno.

Desdeño las romanzas de los tenores huecos
y el coro de los grillos que cantan a la luna.
A distinguir me paro las voces de los ecos,
y escucho solamente, entre las voces, una.

Converso con el hombre que siempre va conmigo
-quien habla solo espera hablar a Dios un día-
mi soliloquio es plática con este buen amigo
que me enseñó el secreto de la filantropía.

Y al cabo, nada os debo; me debéis cuanto escribo,
a mi trabajo acudo, con mi dinero pago
el traje que me cubre y la mansión que habito,
el pan que me alimenta y el lecho en donde yago.

Y cuando llegue el día del último viaje,
y esté al partir la nave que nunca ha de tornar
me encontraréis a bordo ligero de equipaje,
casi desnudo, como los hijos de la mar.

Mas agora teríamos que burilar o poema a partir desse ponto.  Ou seja, o Google Tradutor apenas sugere mudanças, aplica ruido no poema original. Agora, a partir daqui, teríamos que reelaborar o poema.
Ou seja, será que, se eu parto de um bom poema como condição inicial, eu posso obter um poema ainda melhor?
Do GOOGLE TRADUTOR (Sete  iterações) + adequação poética minha:


Lembranças de infância, um pátio em Sevilha,
Um pomar claro com um limoeiro a madurar;
Minha juventude, 20 anos na terra de Castilha;
Minha história, casos que já não quero lembrar.

Não sou um Manara, ou um grande sedutor
Estranhas roupas, não sei de onde vieram
Mas do Cupido a assinalada seta do amor,
Eu recebi, e amei, a quantas me acolheram.

O sangue em minhas veias procura certa rima
Mas, em meus versos, a primavera corre serena;
Mais que um homem que sabe sua doutrina,
Sinto, no bom sentido, o amor em quarentena.

Ocos tenores, cantando alto pelas videiras
O coro dos grilos se elevando para a Lua.
Distinguir os ecos das vozes verdadeiras,
Simplesmente ouvir a voz que é a sua.

Eu falo com aquele que sempre está comigo,
Quem fala sozinho quer falar com Deus um dia;
O solilóquio é minha conversação com esse amigo
Ele que me ensinou o segredo da filantropia.

Afinal de contas, nada devo enquanto escrevo,
Vou para meu trabalho e para meu salário,
A casa em que habito, a roupa que manejo,
O pão que me  alimenta, a cama, o armário.

E quando chegar o dia último desta viagem,
A partir o navio do qual é impossível escapar;
Acho que a bordo, com bem pouca bagagem,
Estarei quase nu, como as crianças do mar.

Nosso universo vai congelar como uma cerveja super-resfriada…


Finding the Higgs? Good news. Finding its mass? Not so good.

“Fireballs of doom” from a quantum phase change would wipe out present Universe.

by  – Feb 19 2013, 8:55pm HB

A collision in the LHC’s CMS detector.

Ohio State’s Christopher Hill joked he was showing scenes of an impending i-Product launch, and it was easy to believe him: young people were setting up mats in a hallway, ready to spend the night to secure a space in line for the big reveal. Except the date was July 3 and the location was CERN—where the discovery of the Higgs boson would be announced the next day.

It’s clear the LHC worked as intended and has definitively identified a Higgs-like particle. Hill put the chance of the ATLAS detector having registered a statistical fluke at less than 10-11, and he noted that wasn’t even considering the data generated by its partner, the CMS detector. But is it really the one-and-only Higgs and, if so, what does that mean? Hill was part of a panel that discussed those questions at the meeting of the American Association for the Advancement of Science.

As theorist Joe Lykken of Fermilab pointed out, the answers matter. If current results hold up, they indicate the Universe is currently inhabiting what’s called a false quantum vacuum. If it were ever to reach the real one, its existing structures (including us), would go away in what Lykken called “fireballs of doom.”

We’ll look at the less depressing stuff first, shall we?

Zeroing in on the Higgs

Thanks to the Standard Model, we were able to make some very specific predictions about the Higgs. These include the frequency with which it will decay via different pathways: two gamma-rays, two Z bosons (which further decay to four muons), etc. We can also predict the frequency of similar looking events that would occur if there were no Higgs. We can then scan each of the decay pathways (called channels), looking for energies where there is an excess of events, or bump. Bumps have shown up in several channels in roughly the same place in both CMS and ATLAS, which is why we know there’s a new particle.

But we still don’t know precisely what particle it is. The Standard Model Higgs should have a couple of properties: it should be scalar and should have a spin of zero. According to Hill, the new particle is almost certainly scalar; he showed a graph where the alternative, pseudoscalar, was nearly ruled out. Right now, spin is less clearly defined. It’s likely to be zero, but we haven’t yet ruled out a spin of two. So far, so Higgs-like.

The Higgs is the particle form of a quantum field that pervades our Universe (it’s a single quantum of the field), providing other particles with mass. In order to do that, its interactions with other particles vary—particles are heavier if they have stronger interactions with the Higgs. So, teams at CERN are sifting through the LHC data, checking for the strengths of these interactions. So far, with a few exceptions, the new particle is acting like the Higgs, although the error bars on these measurements are rather large.

As we said above, the Higgs is detected in a number of channels and each of them produces an independent estimate of its mass (along with an estimated error). As of the data Hill showed, not all of these estimates had converged on the same value, although they were all consistent within the given errors. These can also be combined mathematically for a single estimate, with each of the two detectors producing a value. So far, these overall estimates are quite close: CMS has the particle at 125.8GeV, Atlas at 125.2GeV. Again, the error bars on these values overlap.

Oops, there goes the Universe

That specific mass may seem fairly trivial—if it were 130GeV, would you care? Lykken made the argument you probably should. But he took some time to build to that.

Lykken pointed out, as the measurements mentioned above get more precise, we may find the Higgs isn’t decaying at precisely the rates we expect it to. This may be because we have some details of the Standard Model wrong. Or, it could be a sign the Higgs is also decaying into some particles we don’t know about—particles that are dark matter candidates would be a prime choice. The behavior of the Higgs might also provide some indication of why there’s such a large excess of matter in the Universe.

But much of Lykken’s talk focused on the mass. As we mentioned above, the Higgs field pervades the entire Universe; the vacuum of space is filled with it. And, with a value for the Higgs mass, we can start looking into the properties of the Higgs filed and thus the vacuum itself. “When we do this calculation,” Lykken said, “we get a nasty surprise.”

It turns out we’re not living in a stable vacuum. Eventually, the Universe will reach a point where the contents of the vacuum are the lowest energy possible, which means it will reach the most stable state possible. The mass of the Higgs tells us we’re not there yet, but are stuck in a metastable state at a somewhat higher energy. That means the Universe will be looking for an excuse to undergo a phase transition and enter the lower state.

What would that transition look like? In Lykken’s words, again, “fireballs of doom will form spontaneously and destroy the Universe.” Since the change would alter the very fabric of the Universe, anything embedded in that fabric—galaxies, planets, us—would be trashed during the transition. When an audience member asked “Are the fireballs of doom like ice-9?” Lykken replied, “They’re even worse than that.”

Lykken offered a couple of reasons for hope. He noted the outcome of these calculations is extremely sensitive to the values involved. Simply shifting the top quark’s mass by two percent to a value that’s still within the error bars of most measurements, would make for a far more stable Universe.

And then there’s supersymmetry. The news for supersymmetry out of the LHC has generally been negative, as various models with low-mass particles have been ruled out by the existing data (we’ll have more on that shortly). But supersymmetry actually predicts five Higgs particles. (Lykken noted this by showing a slide with five different photos of Higgs taken at various points in his career, in which he was “differing in mass and other properties, as happens to all of us.”) So, when the LHC starts up at higher energies in a couple of years, we’ll actually be looking for additional, heavier versions of the Higgs.

If those are found, then the destruction of our Universe would be permanently put on hold. “If you don’t like that fate of the Universe,” Lykken said, “root for supersymmetry”

Número de neurônios no cérebro é cinco vezes maior que o número de árvores na Amazônia

Fiz a seguinte conta:  peguei a estimativa de 86 bilhões de neurônios no cérebro e comparei com o número de árvores sugerido pela reportagem abaixo (ou seja, 85/15*2,6 bilhões).  Deu que o cérebro corresponde a cerca de seis Amazônias (em termos de árvores).

Acho que essa é uma comparação importante para quem quer entender, modelar ou reproduzir um cérebro.  Você aceitaria tal tarefa sabendo que é mais difícil do que modelar a Amazônia???

PS: Sim, eu venho acalentando faz tempo que a melhor metáfora para um cérebro é uma floresta, não um computador. Acho que se aplicarmos ideias de computação paralela por meio de agentes, acabaremos encontrando que florestas computam (por exemplo, a sincronização das árvores de ipês, que hora emitir os aerosóis que nucleiam gotas de chuva e fazem chover sobre a floresta etc.). OK, é uma computação em câmara lenta (e é por isso que a não enxergamos).

PS2: Norberto Cairasco anda também encafifado sobre as semelhanças entre dendritos de neurônios e de árvores. Acha que pode haver alguma convergência evolucionária para certas funções, embora em escalas diferentes.

Aproximadamente 2,6 bilhões de árvores foram derrubadas na Amazônia Legal até 2002


01/06/2011 – 11h09

Repórter da Agência Brasil

Rio de Janeiro – Cerca de 15% do total da vegetação original da Amazônia Legal foram desmatados, o que equivale à retirada de aproximadamente 2,6 bilhões de árvores e ao desmate de uma área de 600 mil quilômetros quadrados até 2002. Esse cenário corresponde à destruição de 4,7 bilhões de metros cúbicos de madeira de uma área que, originalmente, representava 4 milhões de quilômetros quadrados cobertos por florestas. Read more [+]

O melhor livro de divulgação científica que encontrei em quarenta anos de leituras

Depois escrevo minha resenha…

A REALIDADE OCULTA – Universos paralelos e as leis profundas do cosmo
Brian Greene
R$ 59,00 Comprar
R$ 39,00 E-Book
Indique Comente
É necessário estar logado para utilizar este recurso. Acompanhe

Meio século atrás, os cientistas encaravam com ironia a possibilidade de existirem outros universos além deste que habitamos. Tal hipótese não passava de um delírio digno de Alice no País das Maravilhas – e que, de todo modo, jamais poderia ser comprovada experimentalmente. Os desafios propostos pela Teoria da Relatividade e pela física quântica para o entendimento de nosso próprio universo já eram suficientemente complexos para ocupar gerações e gerações de pesquisadores. Entretanto, diversos estudos independentes entre si, conduzidos por cientistas respeitados em suas áreas de atuação – teoria das cordas, eletrodinâmica quântica, teoria da informação -, começaram a convergir para o mesmo ponto: a existência de universos paralelos – o multiverso – não só é provável como passou a ser a explicação mais plausível para diversos enigmas cosmológicos.
Em A realidade oculta, Brian Greene – um dos maiores especialistas mundiais em cosmologia e física de partículas – expõe o fantástico desenvolvimento da física do multiverso ao longo das últimas décadas. O autor de O universo elegante passa em revista as diferentes teorias sobre os universos paralelos a partir dos fundamentos da relatividade e da mecânica quântica. Por meio de uma linguagem acessível e valendo-se de numerosas figuras explicativas, Greene orienta o leitor pelos labirintos da realidade mais profunda da matéria e do pensamento.

“Se extraterrestres aparecessem amanhã e pedissem para conhecer as capacidades da mente humana, não poderíamos fazer nada melhor que lhes oferecer um exemplar deste livro.” – Timothy Ferris, New York Times Book Review

Metáforas Cognitivas no Discurso Jornalístico

A nova versão do artigo Metáforas Científicas no Discurso Jornalístico já está no prelo da Revista Brasileira de Ensino de Física. Espero que esteja publicado antes do final do ano.

Você pode fazer um exercício para entender como as metáforas linguísticas (“a máquina econômica” etc.) revelam a presença de metáforas cognitivas (“a Economia é um tipo de máquina”). Para tanto, basta examinar um texto jornalístico ao acaso e grifar, com aquelas canetas coloridas, as metáforas linguísticas presentes.

Restringindo às metáforas científicas (ou seja, não dando atenção às onipresentes metáforas futebolísticas, esportivas ou guerreiras), eu sugiro usar as cores violeta para metáforas matemáticas, azul para metáforas físicas, verde para metáforas biológicas, amarelo para metáforas sociológicas e vermelho para outras metáforas coloquiais, não científicas.. Você vai ficar espantado ao verificar como o texto escolhido, se for relativamente grande, ficará pintado em diversas cores metafóricas.

Isso se dá porque as pessoas tanto pensam metaforicamente como se expressam usando metáforas, e estas são facilmente compreensíveis pelos leitores ou receptores. Em um nível mais profundo, Lakoff e Johnson afirmam que o próprio pensamento humano, a própria cognição, se baseia em metáforas fundamentais.

Como um exemplo, reproduzo aqui um trecho da entrevista de Armínio Fraga na Folha de São Paulo, publicado hoje: Read more [+]

Sobre gênios e demônios criativos

Material para o workshop sobre criatividade. Se encaixa bem na teoria da mente bicameral de Julian Jaynes.

Metáforas científicas (3)

Acho que essa versão 3 é a (quase) definitiva:

Scientific Metaphors in the journalistic discourse

(Submitted on 6 Jun 2010 (v1), last revised 23 Jun 2010 (this version, v3))

Scientific education and divulgation not only amplify people’s vocabulary and repertory of scientific concepts but, at the same time, promote the diffusion of certain conceptual and cognitive metaphors. Here we make some hypothesis about this process, proposing a classification in terms of visible, invisible, basic and derived metaphors. We focus our attention in contemporary and classical physics metaphors applied to psychological and socio-economical phenomena, and we study two exemplar cases through an exhaustive exam of the online content of large Brazilian journalistic portals. Finally, we present implications and suggestions from the cognitive metaphor theory for the scientific education and divulgation process.

Comments: In portuguese, 20 pages, 2 figures, new version submitted to RBEF
Subjects: History of Physics (physics.hist-ph); Physics Education (physics.ed-ph); Popular Physics (physics.pop-ph); Physics and Society (physics.soc-ph)
Cite as: arXiv:1006.1128v3 [physics.hist-ph]

Metáforas científicas

Scientific Metaphors in the journalistic discourse

Osame Kinouchi, Angélica A. Mandrá

(Submitted on 6 Jun 2010 (v1), last revised 8 Jun 2010 (this version, v2))

Scientific education and divulgation not only amplify people’s vocabulary and repertory of scientific concepts but, at the same time, promote the diffusion of certain conceptual and cognitive metaphors. Here we make some hypothesis about this process, proposing a classification in terms of visible, invisible, basic and derived metaphors. We focus our attention in contemporary and classical physics metaphors applied to psychological and socio-economical phenomena, and we study two exemplar cases through an exhaustive exam of the online content of large Brazilian journalistic portals. Finally, we present implications and suggestions from the cognitive metaphor theory for the scientific education and divulgation process.

Comments: In portuguese, 20 pages, 2 figures, corrections and bibliography added
Subjects: History of Physics (physics.hist-ph); Physics Education (physics.ed-ph); Popular Physics (physics.pop-ph); Physics and Society (physics.soc-ph)
Cite as: arXiv:1006.1128v2 [physics.hist-ph]

Metáforas científicas (2)

Encomendei este livro hoje na Amazon, para embasar melhor a discussão com Roberto Takata (encomendei também o Methaphors We Live By):

Where Mathematics Comes From: How the Embodied Mind Brings Mathematics into Being

Amazon.com Review

If Barbie thinks math class is tough, what could she possibly think about math as a class of metaphorical thought? Cognitive scientists George Lakoff and Rafael Nuñez explore that theme in great depth in Where Mathematics Comes From: How the Embodied Mind Brings Mathematics into Being. This book is not for the faint of heart or those with an aversion to heavy abstraction–Lakoff and Nuñez pull no punches in their analysis of mathematical thinking. Their basic premise, that all of mathematics is derived from the metaphors we use to maneuver in the world around us, is easy enough to grasp, but following the reasoning requires a willingness to approach complex mathematical and linguistic concepts–a combination that is sure to alienate a fair number of readers.

Those willing to brave its rigors will find Where Mathematics Comes From rewarding and profoundly thought-provoking. The heart of the book wrestles with the important concept of infinity and tries to explain how our limited experience in a seemingly finite world can lead to such a crazy idea. The authors know their math and their cognitive theory. While those who want their abstractions to reflect the real world rather than merely the insides of their skulls will have trouble reading while rolling their eyes, most readers will take to the new conception of mathematical thinking as a satisfying, if challenging, solution. –Rob Lightner

From Publishers Weekly

This groundbreaking exploration by linguist Lakoff (co-author, with Mark Johnson, of Metaphors We Live By) and psychologist N#$ez (co-editor of Reclaiming Cognition) brings two decades of insights from cognitive science to bear on the nature of human mathematical thought, beginning with the basic, pre-verbal ability to do simple arithmetic on quantities of four or less, and encompassing set theory, multiple forms of infinity and the demystification of more enigmatic mathematical truths. Their purpose is to begin laying the foundations for a truly scientific understanding of human mathematical thought, grounded in processes common to all human cognition. They find that four distinct but related processes metaphorically structure basic arithmetic: object collection, object construction, using a measuring stick and moving along a path. By carefully unfolding these primitive examples and then building upon them, the authors take readers on a dazzling excursion without sacrificing the rigor of their exposition. Lakoff and N#$ez directly challenge the most cherished myths about the nature of mathematical truth, offering instead a fresh, profound, empirically grounded insight into the meaning of mathematical ideas. This revolutionary account is bound to garner major attention in the scientific pressDbut it remains a very challenging read that lends itself mostly to those with a strong interest in either math or cognitive science. (Nov. 15)
Copyright 2000 Reed Business Information, Inc